Heterogeneity of polyelectrolyte diffusion in polyelectrolyte-protein coacervates: a 1H pulsed field gradient NMR study.

نویسندگان

  • Amrish R Menjoge
  • A Basak Kayitmazer
  • Paul L Dubin
  • Werner Jaeger
  • Sergey Vasenkov
چکیده

Proton pulsed field gradient (PFG) NMR was used to study the diffusion of poly(diallyldimethylammonium chloride) (PDADMAC) in coacervates formed from this polycation and the protein bovine serum albumin (BSA). Application of high (up to 30 T/m) magnetic field gradients in PFG NMR measurements allowed probing the diffusion of PDADMAC on a length scale of displacements as small as 100 nm in coacervates formed at different pH's and ionic strengths, i.e., conditions of varying protein-polycation interaction energy. Studies were carried out for a broad range of diffusion times and corresponding values of the mean square displacements. Several ensembles of PDADMAC polycations with different diffusivities were observed in the measured range of diffusion times. The existence of these ensembles and the pattern of their changes with increasing diffusion time support the hypothesis about the microscopic heterogeneity of PDADMAC-BSA coacervates and also provide evidence for the dynamic disintegration and reformation of dense domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyldimethylammonium chloride) versus chitosan.

Electrostatic interactions between synthetic polyelectrolytes and proteins can lead to the formation of dense, macroion-rich liquid phases, with equilibrium microheterogeneities on length scales up to hundreds of nanometers. The effects of pH and ionic strength on the rheological and optical properties of these coacervates indicate microstructures sensitive to protein-polyelectrolyte interactio...

متن کامل

Complexation and coacervation of polyelectrolytes with oppositely charged colloids.

Polyelectrolyte-colloid coacervation could be viewed as a sub-category of complex coacervation, but is unique in (1) retaining the structure and properties of the colloid, and (2) reducing the heterogeneity and configurational complexity of polyelectrolyte-polyelectrolyte (PE-PE) systems. Interest in protein-polyelectrolyte coacervates arises from preservation of biofunctionality; in addition, ...

متن کامل

Mesophase Separation and Probe Dynamics in Protein-Polyelectrolyte Coacervates

Protein–polyelectrolyte coacervates are self-assembling macroscopically monophasic biomacromolecular fluids whose unique properties arise from transient heterogeneities. The structures of coacervates formed at different conditions of pH and ionic strength from poly(dimethyldiallylammonium chloride) and bovine serum albumin (BSA), were probed using fluorescence recovery after photobleaching. Mea...

متن کامل

Structure and rheology of polyelectrolyte complex coacervates.

Scattering investigations of the structure and chain conformations, and the rheological properties of polyelectrolyte complexes (PECs) comprising model polyelectrolytes are presented. The use of charged polypeptides - (poly)-lysine and (poly)-glutamic acid with identical backbones allowed for facile tuning of the system parameters, including chain length, side-chain functionality, and chirality...

متن کامل

Effects of protein-polyelectrolyte affinity and polyelectrolyte molecular weight on dynamic properties of bovine serum albumin-poly(diallyldimethylammonium chloride) coacervates.

Bovine serum albumin (BSA) and poly(diallyldimethylammonium chloride) (PDADMAC) spontaneously form, over a range of ionic strength I and pH, dense fluids rich in both macroions. To study their nanostructure, these coacervates were prepared at low I and high pH (strong interaction) or at high I and lower pH (weaker interaction), with polymer MWs ranging from 90K to 700K, and then examined by dyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 112 16  شماره 

صفحات  -

تاریخ انتشار 2008